skip to main content


Search for: All records

Creators/Authors contains: "Schwarz, Kathleen A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The successful deployment of advanced energy‐conversion systems depends critically on our understanding of the fundamental interactions of the key adsorbed intermediates (hydrogen *H and hydroxyl *OH) at electrified metal–aqueous electrolyte interfaces. The effect of alkali metal cations (Li+, Na+, K+, Cs+) on the non‐Nernstian pH shift of the step‐related voltammetric peak of the Pt(553) electrode is investigated over a wide pH window (1 to 13) by means of experimental and computational methods. The co‐adsorbed alkali cations along the step weaken the OH adsorption at the step sites, causing a positive shift of the potential of the step‐related peak on Pt(553). Density functional calculations explain the observations on the identity and concentration of alkali cations on the non‐Nernstian pH shift, and demonstrate that cation–hydroxyl co‐adsorption causes the apparent pH dependence of “hydrogen” adsorption in the step sites of platinum electrodes.

     
    more » « less
  2. Abstract

    The successful deployment of advanced energy‐conversion systems depends critically on our understanding of the fundamental interactions of the key adsorbed intermediates (hydrogen *H and hydroxyl *OH) at electrified metal–aqueous electrolyte interfaces. The effect of alkali metal cations (Li+, Na+, K+, Cs+) on the non‐Nernstian pH shift of the step‐related voltammetric peak of the Pt(553) electrode is investigated over a wide pH window (1 to 13) by means of experimental and computational methods. The co‐adsorbed alkali cations along the step weaken the OH adsorption at the step sites, causing a positive shift of the potential of the step‐related peak on Pt(553). Density functional calculations explain the observations on the identity and concentration of alkali cations on the non‐Nernstian pH shift, and demonstrate that cation–hydroxyl co‐adsorption causes the apparent pH dependence of “hydrogen” adsorption in the step sites of platinum electrodes.

     
    more » « less